Acta Crystallographica Section E

Structure Reports

Online

Bis(benzimidazol-2-ylmethyl)amine-ethanolwater (2/1/2)

ISSN 1600-5368

Xiang-Gao Meng,* Fu-Sheng Mei and Zhan-Ru Liao

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
mengxianggao@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.059$
$w R$ factor $=0.167$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the asymmetric unit of the structure of the solvate of bis(benzimidazol-2-yl-methyl)amine (IDB), $2 \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \cdot-$ $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, there are two molecules of IDB, two uncoordinated water molecules and one ethanol solvent molecule. In the crystal structure, IDB, water and ethanol molecules are connected into a three-dimensional network via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \quad \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \quad \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ (arene) interactions.

Comment

In a continuation of our studies (Meng et al., 2005) of the influence of solvents on the molecular and supramolecular structures of bis(benzimidazol-2-yl-methyl)amine (IDB), we report here the crystal structure of the title compound, (I).

(I)

The asymmtric unit of (I) (Fig. 1) contains two molecules of IDB, two uncoordinated water molecules and one ethanol molecule. Both IDB molecules and one water molecule are disordered (see Experimental). The molecular geometric parameters of IDB are not significantly different from those of an earlier reported structure (Meng et al., 2005), with the exception of the torsion angles of the atomic segment between the two benzimidazole units (Table 1).

The supramolecular aggregation in (I) is dominated by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, accompanied by $\mathrm{C}($ or N$)-\mathrm{H} \cdots \pi$ interactions, forming a threedimensional structure (Table 2 and Fig. 2). Molecules are linked into a two-dimensional sheet in the $a b$ plane by a combination of intermolecular hydrogen bonds and $\mathrm{C}($ or N$)-$ $\mathrm{H} \cdots \pi$ interactions; $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 9$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$ hydrogen bonds link adjacent two-dimensional layers into a three-dimensional network (Fig. 2).

Experimental

Bis(benzimidazol-2-yl-methyl)amine (IDB) was prepared according to the method described by Adams et al. (1990). IDB ($0.27 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in $10 \mathrm{ml} 95 \%$ ethanol at 323 K . After slow cooling to room temperature, colorless crystals suitable for X-ray diffraction had collected at the bottom of the vessel.

Crystal data

$2 \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$V=1671.5(3) \AA^{3}$
$M_{r}=636.76$	$Z=2$
Triclinic, $P \overline{1} \overline{1}$	$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.6345(8) \AA$	Mo $K \alpha$ radiation
$b=14.0418(13) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$c=14.2810(13) \AA$	$T=292(2) \mathrm{K}$
$\alpha=92.724(2)^{\circ}$	Block, colorless
$\beta=104.845(2)^{\circ}$	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: none
14144 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.167$
$S=1.03$
7160 reflections
509 parameters

7160 independent reflections
4258 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.0^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0783 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$166.1(7)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{N} 6-\mathrm{C} 25$	$-166.3(7)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	$179.2(7)$	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{N} 6-\mathrm{C} 17$	$130.9(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1^{\prime}-\mathrm{C} 9^{\prime}$	$98.3(7)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{N} 6^{\prime}-\mathrm{C} 25$	$162.9(7)$
$\mathrm{C} 10-\mathrm{C} 9^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 1$	$-169.3(7)$	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{N} 6^{\prime}-\mathrm{C} 17$	$166.4(7)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1^{\prime}-\mathrm{H} 1^{\prime} \cdots \mathrm{N} 3$	0.861 (10)	2.44 (4)	3.097 (10)	134 (4)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.860 (9)	1.909 (11)	2.756 (2)	168 (2)
$\mathrm{N} 6^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O} 1$	0.99 (8)	2.597 (16)	3.352 (19)	133 (8)
N8-H8 \cdots O1	0.874 (9)	2.040 (11)	2.902 (2)	169 (2)
N10-H10 \cdots O1	0.864 (9)	2.159 (12)	2.984 (2)	159 (2)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 7$	0.830 (10)	2.041 (13)	2.862 (3)	170 (3)
$\mathrm{O} 2^{\prime}-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{N} 7$	0.823 (10)	1.881 (16)	2.704 (11)	178 (16)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 9^{\mathrm{i}}$	0.831 (10)	1.911 (12)	2.732 (2)	169 (4)
$\mathrm{N} 1^{\prime}-\mathrm{H} 1^{\prime} \cdots \mathrm{O} 2^{\text {'ii }}$	0.861 (10)	2.35 (10)	3.045 (15)	138 (12)
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {,ii }}$	0.847 (10)	1.958 (18)	2.758 (12)	157 (2)
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {ii }}$	0.847 (10)	2.060 (11)	2.907 (3)	178 (2)
$\mathrm{O} 1-\mathrm{H} 1 E \cdots \mathrm{~N} 4^{\text {iii }}$	0.833 (10)	2.007 (11)	2.836 (3)	173 (3)
$\mathrm{O} 1-\mathrm{H} 1 F \cdots \mathrm{~N} 1^{\text {iv }}$	0.834 (10)	2.22 (2)	2.835 (10)	131 (2)
$\mathrm{O} 1-\mathrm{H} 1 F \ldots \mathrm{O} 2^{\text {v }}$	0.834 (10)	2.231 (19)	2.941 (11)	143 (2)
$\mathrm{O} 1-\mathrm{H} 1 F \cdots \mathrm{~N} 1^{\text {iv }}$	0.834 (10)	2.616 (18)	3.347 (5)	147 (2)
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 3^{\text {ii }}$	0.836 (10)	2.046 (11)	2.881 (3)	176 (4)
$\mathrm{O} 2^{\prime}-\mathrm{H} 2 C \cdots 5^{\text {ii }}$	0.822 (10)	2.31 (13)	2.758 (12)	115 (12)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cg} 1^{\text {vi }}$	0.862 (10)	2.91 (2)	3.632 (5)	143 (3)
$\mathrm{C} 9^{\prime}-\mathrm{H} 9 \mathrm{D} \cdots \mathrm{Cg} 1^{\text {vi }}$	0.97	2.56	3.485 (11)	159
$\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	2.91	3.661 (3)	138
C6-H6 $\cdots \mathrm{Cg}^{\text {vii }}$	0.93	2.91	3.661 (3)	139
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 3^{\text {vii }}$	0.93	2.93	3.758 (3)	149
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cg} 4^{\text {vii }}$	0.93	3.00	3.713 (3)	135
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Cg} 5^{\text {iv }}$	0.93	2.88	3.600 (3)	136

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+1,-y,-z+1$; (iv) $x, y, z+1$; (v) $-x+1,-y+1,-z+2$; (vi) $-x+2,-y,-z$; (vii) $x+1, y, z-1$.

Figure 1
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate the minor disorder components.

Figure 2
Part of the crystal structure of (I), showing the formation of a threedimensional network. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Hydrogen bonds are shown as dashed lines.

Both IDB molecules are disordered. The disorder corresponds to two orientations of the $-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}$ segments between benzimidazole units in each molecule. In addition, one of the uncoordinated water molecules is disordered over two sites. Bond distances in the disordered groups were constrained using $D F I X$ and $S A D I$ commands (SHELXL97; Sheldrick, 1997). The site-occupancy factors for disordered components were intially refined but were eventually fixed at $0.72 / 0.28$ for $\mathrm{N} 1 / \mathrm{N} 1^{\prime}$ and $\mathrm{C} 9 / \mathrm{C} 9^{\prime}, ~ 0.74 / 0.26$ for $\mathrm{N} 6 / \mathrm{N} 6^{\prime}$ and 0.79/0.21 for $\mathrm{O} 2 / \mathrm{O}^{\prime}{ }^{\prime}$.

H atoms bonded to C atoms were assigned $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic), $0.97\left(\mathrm{CH}_{2}\right)$ or $0.96 \AA\left(\mathrm{CH}_{3}\right)$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C$) . \mathrm{H}$ atoms bonded to N atoms were located in difference maps and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The H atoms of the water molecules and hydroxyl group were also located in a difference Fourier map and were refined with the following restraints; $\mathrm{O}-\mathrm{H}=0.82(1) \AA$, and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$.

There is a closer than normal contact between two H atoms, viz. $\mathrm{H} 5 A \cdots \mathrm{H} 2 \mathrm{C}$ of $1.47 \AA . \mathrm{H} 2 C$ is bonded to the minor component of a disordered uncoordinated water O atom and constitutes $c a 0.21$ of an H atom. There may be some discrepancy in the position of this H atom

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to

organic papers

solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Key Fundamental Project (2002CCA00500) and the National Natural Science Foundation of China (Nos. 29971012 and 29972014).

References

Adams, H., Bailey, N. A., Carane, J. D. \& Fenton, D. E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-1735.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Meng, X.-G., Mei, F.-S. \& Liao, Z.-R. (2005). Acta Cryst. E61, o3047-o3049.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

